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The forward rectilinear motion of a system of two rigid bodies along a horizontal plane is considered. Forces of dry friction act 
between the bodies and the plane, and the motion is controlled by internal forces of interaction between the bodies. A periodic 
motion in which the system moves along a straight line is constructed. The optimum parameters of the system and a control law 
are found corresponding to the maximum mean velocity of motion of the system as a whole. 0 2002 Elsevier Science Ltd. All 
rights reserved. 

1. INTRODUCTION 

Before giving a formal statement of the problem, we will discuss the possibilities of a system moving 
under the action of internal forces in the presence of dry friction. 

Consider a system of N identical rigid bodies of mass m on a horizontal plane (Fig. 1). Forces of dry 
friction, obeying Coulomb’s law, act between the bodies and the plane; the coefficient of friction of the 
bodies against the plane is denoted by k. Adjacent bodies may interact with one another via internal 
forces F. Under certain conditions the system may move along a straight line x. 

We will describe one simple mode of motion. At the initial instant all the masses are at rest. First, 
mass 1 moves along the x axis for a certain distance AX, less than the distance between masses 1 and 
2, and then stops. During this time, all the other masses are stationary. The motion of mass 1 consists 
of an accelerating phase, in which the interaction force F between masses 1 and 2 exceeds the friction 
force (F > mgk), and a decelerating phase, in which F < mgk, where g is the acceleration due to gravity. 
In the meantime the other masses must interact with one another and remain in a state of rest, with 
the condition that the inequality 1 F 1 s (N - 1)mgk holds throughout the motion of mass 1. Next, mass 
2 moves through a distance Ax in exactly the same way as mass 1 did before, all the other masses 
remaining stationary. In the process, the sum of the forces that the adjacent stationary masses 1 and 3 
exert on mass 2 must be greater than mgk in the accelerating phase and less than mgk in the decelerating 
phase. Continuing the process of the masses moving in turn, as described, we end it with mass N moving 
through a distance Ax. As a result, the whole system is displaced a distance Ax, after which the process 
may be repeated any number of times. The periodic motion just described is possible if the force with 
which two adjacent masses interact varies within the limits 

mgk<(FlS(N--I)mgk (1.1) 

It should be mentioned that wave motions of the bodies in the presence of dry friction forces were 
considered in [l, 21. It follows from inequalities (1.1) that the method of movement just described is 
applicable only when N 3 3. It is therefore of interest to investigate the possibilities of motion in a 
simple two-mass system. 

2. STATEMENT OF THE PROBLEM 

Consider a system of two interacting rigid bodies of masses ml and m2, capable of moving along the 
x axis on a horizontal plane (Fig. 2). Dry friction forces obeying Coulomb’s law act between the bodies 
and the plane; the coefficients of friction for masses, ml and m2 are kl and k2, respectively. The force 
that mass m2 exerts on mass ml is denoted by F, then mass ml exerts a force -F on mass m2. We shall 
assume that the distance L between the masses may vary in the interval LO - q s L s Lo, where Lo is 
the initial distance and TV s Lo is the admissible distance to within which the masses may approach one 
another compared with the initial state, that is, the path or range of admissible relative motion. 
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Fig. 1 

Let Xi denote the displacement of mass mi from its initial position, and vi its velocity, i = 1, 2. The 
distance between the masses if Lo + x2 -x1. We have 

i; ==Ui, i=l,2 (2.1) 

The equations of motion of the masses ml and m2, taking Coulomb’s law into account, may be written 
in the form 

m,li, = F - m,gk, signu, for u, #O, )F(=Sm,gk, for uI =0 

(2.2) 
m,$ = -F-m,gk2 signv2 for u2 f 0, I F)Gm2gk, for v2 =0 

Suppose at the initial instant t = 0 both masses are at rest and at the maximum admissible distance 
Lo from one another. 

It is required to construct a piecewise-constant law for the variations of the control force F(t), under 
which both masses will move the same distance 5 in a time T and be again at rest at the end of the 
motion, Throughout, the distance between the masses must remain within the given limits, as can be 
expressed by the inequality 

OS+(t)-x,(t)Gfl, tc[O, T] (2.3) 

where rl > 0 is the given constant. The required motion will consist of a sequence of four steps, as follows: 
1. Forward accelerated motion of mass ml, mass m2 remains stationary. 
2. Forward decelerated motion of mass ml, forward accelerated motion of mass m2. 
3. Reverse accelerated motion of mass ml, forward accelerated motion of mass m2. 
4. Reverse decelerated motion of mass ml, forward decelerated motion of mass m2. 
?‘he meaning of these steps needs some explanation. Let us consider the mass m2 as the primary mass 

and the mass m2 as the smaller, secondary one (ml c m2). Since the masses are initially at their greatest 
admissible distance from one another, they will approach one another in the first step, but in such a 
way as not to produce reverse motion of mass m2. The main forward advance of mass m2 will occur in 
the second and third steps, because of the strong mutual repulsion of the masses. In the fourth step, 
the masses slow down in such a way that they halt simultaneously, at the same distance from one another 
as initially. Note that the primary mass ma, unlike the secondary one, does not move backwards. This 
scheme of motion therefore seems quite rational. In what follows we will assume that ml c m2. 

Let 4 denote the durations of the steps and let Fi be the constant values of the control force at these 
steps, i = 1,2,3,4. The only difference between steps 2 and 3 is the change in the sign of the velocity 
(but not the acceleration) of one mass, ml. To simplify matters, therefore, we shall assume that the control 
force remains unchanged during these steps: F2 = F3. For the motion to possess these properties, the 
constants Fi must satisfy the inequalities 

m,gk, c F; < m,gkz, F2 < -m2gk2, F4 > -m,gk, (2.4) 

For the required motion to satisfy all the stipulated conditions, the parameters must obey several 
relations. To determine these relations, we shall compute all the steps of the motion. 

X 

Fig. 2 
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3. COMPUTATION OF THE MOTION 

Let us integrate Eqs (2.1) and (2.2) successively over all steps of the motion, taking inequalities (2.4) 
into account and assuming that the coordinatesx,,xz and the velocities u,, y satisfy continuity conditions 
at the boundaries of the steps. At the instant t = 0 we have the initial conditions 

x,(O)=xz(O)=O, u,(O)=u,(O)=O (3.1) 

For the first step we obtain, noting conditions (3.1) 

v,(t)=(F;m;’ -gk,)t, x,(t)=(&rr;’ -@Jr212 

(3.2) 
L&)=0, x#)=O, fE[O, z,] 

For the second step we have 

u,(t) = (Fzm;’ -’ -gk,)U-75,)+(&m, - gk, )r, 

x,(t) = (F*m;’ -’ -gk,)(t-2,)*/2+(&m, -gk,)o,(t-r,)+(F;n+ -gk,)$/2 

u*(r)=-(F2m;’ +gk,)(t-r,) 

X*(r)=-_(F*m;’ +gk,)(r-Q/2, ?E[T,. ‘5, +r*] 
(3.3) 

Since the velocity u1 must vanish at the end of the second step, we have the condition 

-’ u,(r, +r*)=(@$ - gk, )2, + (qm;’ - g&,)2, = 0 (3.4) 

Integrating Eqs (2.1) and (2.2) over the third step and satisfying condition (3.4), in addition to the 
continuity of the coordinates and velocities, we obtain 

X,(‘)=(F2~;‘+gk,)(t-~,-2*)*+(F2m;’-gk,)r~12+(F;m;‘-g&,)~,(2*+z,/2) (3.5) 
u,(t)=-_(F*nZ;‘+gk*)(t-T,) 

x,(t)=-(F*m;‘+gk*)(t-2,)*/2, tE[Z,+r*, 2,+r,+2,] 

Finally, for the fourth step we have 

u,(‘)=(F4m;’ +gk,)(t-z, -tq -r,)+(F*m;’ +gk,)r, 

x,(t) = (F,m,-’ +gk, )(t - t, - ‘52 - 2s)* /2+(F*m;’ +gk,)z,(t-7, -t* - 2,)+ 

+(F*m;’ + gk, )r; /2 + (F*m, -’ -gk,)+2+(F;m;’ -gk,)z,(,rz +z, /2) 

u2(t)=-(F,m;‘+gk~)(r-t,-z2-z~)-(F2m;’+gk,)(r,+r,) 

x,(t) = -(F,m;’ +gk,)(r -r, -r,-rs)*/2-(F,m;‘+gk,)(r,+r,)*/2- 

-(F,m;‘+gk,)(r,+rs)(r-r,-r,-rs), re[r,+r2+r3, T] 

(3.6) 

The duration T of the entire motion is expressed as 

T=r, +r*+rs+r, (3.7) 

At the end of the motion, the velocities of both bodies must equal zero, and their displacements should 
equal 5 

u,(T)=u2(T)=0, x,(T)=x*(T)=k (3.8) 

Formulae (3.2), (3.3), (3.5) and (3.6) completely describe the entire motion. The parameters F,, F2, 
F4 and ri (i = 1, 2,3,4) introduced above must satisfy conditions (3.4), (3.7) and (3.8). 
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TO simplify the subsequent arguments, we will introduce the following dimensionless parameters 

F; =wkti. 6 =--m&f, f$ =qgk,f, 
(3.9) 

v=m2kZ(m,k,)-‘, p=mIlm2 <l 

In terms of the parametersfi,f2,f4 and v, inequalities (2.4) become 

l<A<v, f>v, f4>-1 
After substituting (3.9) condition (3.4) becomes 

(A-10, -(f+l)t*=O 

Substituting solutions (3.6) for u1 and y into the first two conditions 
Eqs (3.7) and (3.9), we obtain 

(f4+I)T,-(f-lN3 =o 

(3.10) 

(3.11) 

of (3.8) and simplifying, using 

(3.12) 

The three linear equations (3.11) and (3.12) may be used to express the durations of all the steps in 
terms of zl: 

h-1 '52 =gl. ‘53 = 
(f-WA-l)(f4+1) 
(f+I)(f+fq)W-1) T1 

z4 = (f+I)(f+fq)(V--I) 
cf-l)cf-wA -UT, 

Substituting (3.13) into (3.7) we express r1 in terms of T: 

f, = (f+l)tv-1>T 
fcf;-I,+fcv-l)+v-X 

(3.13) 

(3.14) 

Note that the numerators and denominators of all formulae (3.13) and (3.14) are positive, by virtue 
of inequalities (3.10). 

We now substitute solutions (3.6) forxi andx2 into the last two conditions of (3.8). After simplifying, 
using relations (3.7), (3.9) and (3.13) we obtain 

5=A(f;-I)[(f+f,)(f+~)(f+1)(v--1)2-(f4+I)(f;-I)(f-I)(f-v)2l 
(3.15) 

5= ACl(f4+~)(f;-1)~(f--1)'(f-~) 

The motion must also satisfy condition (2.3). It follows from the description of steps l-4 in 
Section 2 that the masses ml and m2 approach one another in step 1 but draw apart in steps 3 and 4. 
Consequently, they are at their least distance apart in step 2. Let us find that least distance. Since the 
distance between the masses is Lo + x2 --xi, the required minimum, i.e., the maximum of the distance 
x1 -x2, is reached when u1 = y, and into this condition we must substitute the expressions for u1 and 
U* from solution (3.3) for step 2. From this we find the unique time ti at which the masses approach to 
within the least distance: 

t, =r, +e, e= cr; - ID, 
f+l+Mf-V) (3.16) 

We substitute (3.16) into the formulae for x1 and x2 from (3.3) and equate the maximum distance 
xi(ti) -x2(tl) to the given quantity TJ of condition (2.3). We obtain 
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q= 
.dv: t-6 -l)(fi +f+clf-w 

2 f+l+W-VI 
(3.17) 

These formulae enable one to solve different versions of problems of the motion of a two-mass system. 
Let us consider a few such problems. 

1. Suppose we are given the parameters of the system (the masses ml and m2 and the coefficients 
ki and Q, the total displacement 5 and the admissible range of relative motion q, as well as the total 
duration T of the cycle of motion. It is required to find the other characteristics of the motion, f, fi, f4 
and zj (i = 1,2,3,4). Equations (3.15) and (3.17), into which we must substitute expression (3.14) for 
71, form a system of three algebraic equations for the three unknownsf,fi andf4. This system is rather 
cumbersome and depends on several parameters, and its solution must satisfy inequalities (3.10). The 
only simplification is that any of Eqs (3.15) is linear in f4, so that the system reduces to a system of two 
algebraic equations for f and fi. Having solved this system by a suitable numerical method, one can 
determine the durations of the steps ri (i = 1,2,3,4) from formulae (3.13), (3.14). 

2. Another formulation of the problem assumes that, besides the system parameters ml, m2, kl, kZ, 
the parameters of the first step of motion z1 and fi are also given, as well as rl. It is required to find the 
other parameters of the motion (f, f4, z2, TV, TV, T, 5). This problem is easily solved: from Eq. (3.17), 
which is linear in f, we find f, and then, eliminating 5 from Eqs (3.15), we derive a linear equation for 
f4. We determine f4 and then also 5. The durations of the time intervals z2, z3, r4, T are found from 
Eqs (3.13) and (3.14). In this case all the unknown quantities are uniquely determined in explicit form. 
It is only necessary to verify inequalities (3.10). 

be 
3. The initial and boundary conditions (3.1) and (3.8) indicate that the motion just constructed can 
repeated any number of times. In the process, the control force and velocity of motion will be varied 

periodically with period T, and the displacements of both bodies will receive equal increments 5 in each 
cycle of motion. It is therefore natural to try to maximize the average velocity of displacement of the 
system as a whole, which is 

This problem will be investigated below. 

u=EJT (3.18) 

4. OPTIMIZATION 

We *first fix all the parameters of the system (ml, m2, kl, k,) and the admissible range of relative 
motion n. We wish to find the parameters 5, T, f, fi, f4 and ri (i = 1,2,3,4) which maximize the average 
velocity of motion. 

This problem will be solved with one simplifying assumption: the magnitude of the force F2 in the 
second and third steps is infinite. This assumption is quite natural: these steps involve the main 
displacement of the mass m2, and there is no upper limit on the magnitude of the propelling force 
-F2 (see (2.4)). In that case, the motion in steps 2 and 3 reduces to an impulse of the finite magnitude. 

By formulae (3.9) and (3.13), we have 

f + 00. T2 +o, 73 +o, f(z,+z,)+ tfi -w-4+v)7 
v-l I 

=q (4.1) 

The quantity q is equal, apart from the factor mgkl, to the magnitude of the impulse exchanged by 
masses ml and m2 in the second and third steps of the motion. 

It follows from (3.13) and (3.14), under condition (4.1), that 

T, = 
(v- l)T 

J +v-2’ 
‘54 = (fi -1)T 

jj +v-2 

Relations (3.15) and (3.16) also simplify when f + 00, giving 

5= g/$z:tf; -l)1(v-l)2 -<f, +l)(f; -111 
2(v-1)2 

(4.2) 

(4.3) 

5= &+(f, + wf; - u2 , 
2(v-1)2 

rl = gk,$(f; - 1) 
2 
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Eliminating 5 from the first two equations of (4.3), we obtain 

f _(v4-(f;-1)(1+Pv) 
4- CJ; -l)(l+P) (4.4) 

A direct check verifies that, if the inequalities u < 1 and 1 < fi < v of (3.9) and (3.10) are satisfied 
thenf4 of (4.4) satisfies the conditionf4 > -1 of (3.10). Substitutingf, from (4.4) into the second equation 
of (4.3), we have 

5= gk,&f; - l)(f; + v -2) 
2(v- 110 +P) 

(4.5) 

To determine the average velocity u, we substitute 5 from (4.5) and T from the first equation of (4.2) 
into (3.18), obtaining 

u = &WA - 1) 
2o+vL) 

Substituting the value of ri obtained from the last relation of (4.3) into (4.6), we finally have 

(4.6) 

(4.7) 

It follows from (4.7) that the velocity u increases monotonically as fi increases. The maximum u is 
achieved at the upper limit of (3.10) forfi, i.e., in the limit asfi + v. Now, using formulae (4.1)-(4.4) 
and (4.7), we obtain the optimum values of all the parameters: 

f-$=9 f; --)v* f4= v-2-pv 

l+P 

(4.8) 

Strictly speaking, the required maximum velocity u,, is unattainable, but it may be approximated as 
closely as desired asfi + v. 

Using relations (3.9), we transform formula (4.8) for u,,,, to dimensional variables: 

urnax =Ig~m,(m$~ -mlkl)121%ml +m,)-' (4.9) 

Let us investigate the influence of the coefficients of friction and the mass ratio on the maximum 
velocity of displacement. If the coefficients of friction lie within the limits 

k- s k, s k+, k- c k, s k+ 

where k- and k+ are given numbers, the maximum velocity is reached when k, = k-, k2 = k+. 
For fixed coefficients of friction, the function u,,,, in (4.9) may be expressed as a function of the mass 

ratio u = m2/m1 as follows: 

u max = 1PJlcp(W21~~ Mu) = W, - elk, )(l + CI)-* 

The function (p(u) has a single maximum in the interval (0, lo), when 

u = k,(2k, + k,)-’ c 1 

(4.10) 

(4.11) 
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The corresponding maximum velocity (4.10) is 

u ;,a, = (grl)Xk,lS(k, + kz XM (4.12) 

In the special case when the masses ml and m2 have the same coefficients of friction, i.e., kl = k2 = k, 
it follows from (4.8)-(4.12) that 

p=mm,/m2=fi, V=3, f; =3, f4=0 

T = 2~++,k)-~, 5 = r~ 12, v ;,, = (g& / 4 (4.13) 

We have thus obtained simple, readily understood relations for the optimum motion. Naturally, in 
order to increase the average velocity of motion, the coefficient of friction k2 of the primary mass should 
be increased and that of the secondary mass, k,, decreased. We also have a simple formula (4.11) for 
the mass ratio. In the case of equal coefficients of friction, the secondary mass must be one third of 
the primary mass, and the total displacement 5 per cycle of optimum motion turns out to be half of the 
admissible range TJ of relative motion. We recall, however, that all these conclusions were obtained with 
the control force subject to no restrictions; in one step of the motion, in fact, the control force was even 
assumed to be infinite (impulsive). By imposing restrictions on the control force and solving the resulting 
optimization problems numerically, one obtains more realistic - but less intuitive - results. 

The two-mass system considered above is of interest, as a simple mechanical model capable of moving 
on a plane in the presence of friction, as a result of internal control forces. The motion of such a system 
will be more efficient if energy regeneration is allowed, that is, a spring is incorporated. 
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